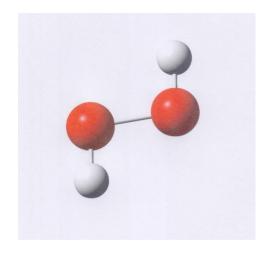
Der Wasserstoffperoxid - Zerfall


Kinetik und Energetik

Gerhard Greiner

Fragen, Lernziele

- Kinetik des Zerfalls und der Bildung des Produkts O₂
- Messung der Bildung von O₂. Zeitabhängigkeit
- Gleichung für die Bildung des Produkts, c = f(t)
- Ermittlung der Geschwindigkeitskonstante k_{Produkt}
- Ermittlung der Anfangskonzentration von H₂O₂
- Graph f
 ür den Zerfall des Edukts
- Vergleich der Messwerte
- Aktivierungsenergie
- Was bedeutet k? Visualisierung
- Warum bleibt der Katalysator unverändert?
- Der katalytische Zyklus
- Einige Anwendungen

Daten zum Molekül

Bindungswinkel, (Diederwinkel): 111^o

Molare Masse: 34,02 gmol⁻¹

• Bildungsenthalpie: $\Delta_f H^{0}(\text{liqu}) = -188 \text{ kJmol}^{-1}$

 $\Delta_{\rm f} {\rm H}^{\rm 0} \, ({\rm gas}) = - \, 136,11 \, {\rm kJmol}^{-1}$

 $\Delta_{\rm f} H^0$ (aqu) = - 200 kJmol⁻¹

• Zerfallsreaktion: $H_2O_2 \rightarrow H_2O + \frac{1}{2}O_2$

• Standard Enthalpie der Zerfallsreaktion: $\Delta_r H^0 = -98,02 \text{ kJmol}^{-1}$ exotherm

• Aktivierungsenergie der Zerfallsreaktion: $\Delta_{akt}H = +76 \text{ kJ mol}^{-1}$

Daten aus Wikipedia

1. Kinetik des Zerfalls

Die stöchiometrische Gleichung:

$$2 H_2 O_2 \rightarrow 2 H_2 O + O_2$$

legt nahe, dass 2 Moleküle H_2O_2 beim Zerfall stoßen sollten, um 1 Molekül O_2 zu liefern Das sollte für die Zerfallsreaktion eine Kinetik 2. Ordnung in Abhängigkeit der H_2O_2 – Konzentration liefern.

Wir wissen aber, dass man aus der Stöchiometrie nicht auf den zeitlichen Konzentrationsverlauf schließen darf. Man muss messen!

Wir wissen aber auch, dass die Zerfallsreaktion unter Katalyse beschleunigt abläuft. Geeignete Katalysatoren sind: Katalase, Pt, I⁻ -Ionen, MnO₂

Wir wollen für die folgenden Messungen den Zerfall des H₂O₂ unter MnO₂-Katalyse analysieren.

Kinetik des Zerfalls und Bildung des Produkts

Welches Zeitgesetz beschreibt den Zerfall des H₂O₂ bzw. die Bildung des O₂?

Zerfall

$A \rightarrow B$

Produktbildung

0. Ordnung

$$v = -k$$

 $c(t)_A = c(0)_A - k*t$

$$v = k$$
 $c(t)_{R} = k*t$

1. Ordnung

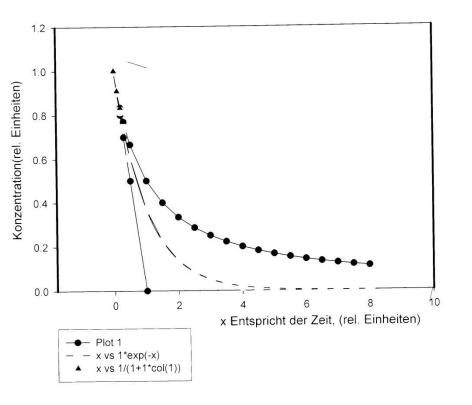
$$v = -k*c(t)$$

 $c(t)_{\Delta} = c(0)_{\Delta} *e^{-kt}$

$$v = k*c(0)_A*e^{-kt}$$

 $c(t) = c(0)_A*(1 - e^{-kt})$

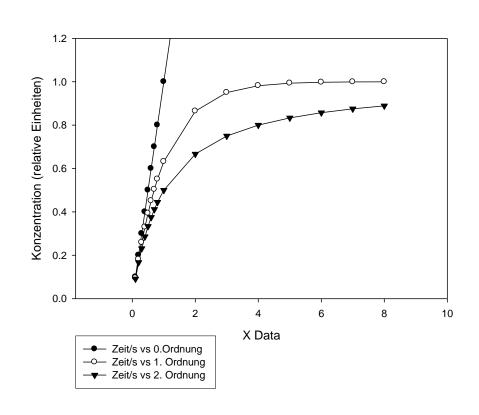
2. Ordnung


$$v = -k* c(t)_A^2$$

1/c(t)_A = 1/c(0)_A + k*t

$$v = k*c(t)_A^2 = (c(0)_A - c(t)_B)$$

 $c(t)_B = c(0)_A - c(0)_A / ((1+c(0)_A*kt)_B)$


 $A + A \rightarrow B$

Graphische Darstellung des Konzentrationsverlaufs in Abhängigkeit der Zeit

Konzentration-Zeit-Diagramm für das Edukt o. Ordnung, 1. Ordnung, 2. Ordnung für je k=1 und $c_{0A}=1$

Konzentration-Zeit-Diagramm für das Produkt 0.Ordnung, 1.Ordnung, 2.Ordnung für je k = 1 und $c_{0A} = c_{0B} = 1$

1.1. Kinetik des Zerfalls mit MnO₂ als Katalysator

Messmethode:

a) Man misst die Konzentration des H₂O₂ in Abhängigkeit der Zeit Man misst also die Abnahme des **Edukts**

Oder:

b) Man misst die Konzentration des entstehenden Sauerstoffs in Abhängigkeit der Zeit Man misst also die Entstehung des **Produkts**

Vorgehen nach b):

b1: Man misst das **Volumen** des entstehenden Sauerstoffs durch die Verdrängung von Wasser aus einem Messzylinder und liest die Volumenänderung ΔV ab.

Oder:

b2: Man misst das Volumen des entstehenden Sauerstoffs durch die Verdrängung von Wasser und bestimmt die Masse des verdrängten Wassers durch **Wägung**.

Für die Wägung wird eine elektronische Waage benutzt, deren Messdaten **Zeit t** und **Masse** in die Excel-Tabelle eines angeschlossenen Computers eingeschrieben werden.

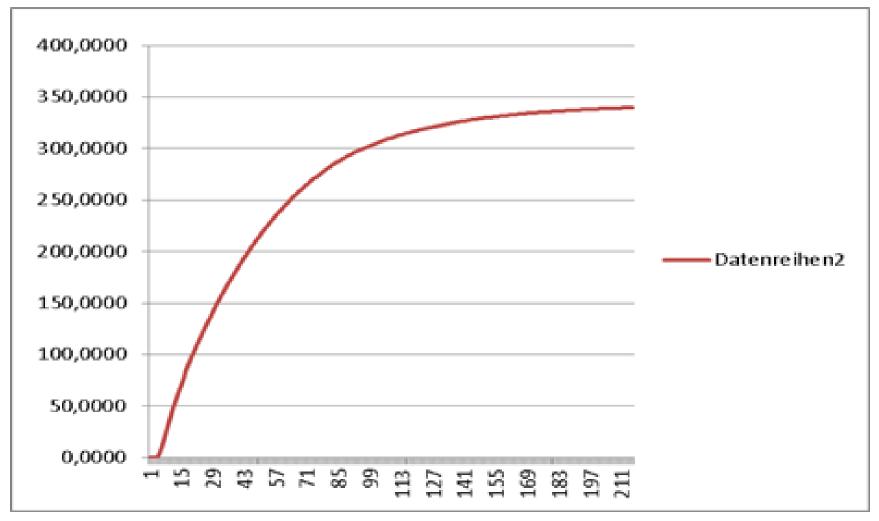
Wie groß ist hierbei der Fehler?

Das Verfahren nach b₂ hat 2 Vorteile:

- 1.) Die Genauigkeit ist größer als bei der volumetrischen Messung
- 2.) Die Auswertung der Messdaten kann sofort erfolgen.

Messapparatur

Versuchsanordnung



Video einer Messung bei ⁰C

https://youtu.be/4lHi5BgkSIY

Fig. 1: Ergebnis einer Messung des freiwerdenden Sauerstoffs bei 25° C (?) während 3,51 Minuten. Endwert: s. später

Ordinate: Wassermasse in g = Sauerstoffvolumen in ccm. Endwert: $V(O_2) = 348,6$ ccm = $c_0 (H_2O_2)/2$

Abszisse: Zeit t in s

Gerhard Greiner

Wie können wir aus dem Zeitgesetz für die **Bildung** des Sauerstoffs auf das Zeitgesetz für den **Zerfall** des H₂O₂ schließen?

Annahme: Wenn wir versuchsweise annehmen, dass der Zerfall des H_2O_2 nach einer Kinetik 1. Ordnung erfolgt.

also:

$$\Delta c (H_2O_2) / \Delta t = -k \cdot c(t)$$
 genauer: $dc/dt = -k \cdot c$

dann findet man nach der Integration das Zeitgesetz:

$$c(H_2O_2) = c_0 \cdot e^{-kt}$$

wobei c_0 die Anfangskonzentration von H_2O_2 bei t =0 ist und für $t \rightarrow \infty$ $c \rightarrow 0$

Mit der Bedingung, dass sich die Konzentrationen von noch vorhandenem H_2O_2 (t) und entstandenem O_2 zur Anfangskonzentration c_0 (H_2O_2)/2 ergänzen müssen, also:

$$c(t)H_2O_2 + c(t)O_2 = c_0 (H_2O_2)/2 \text{ und daher,}$$

$$c(t)O_2 = c_0 (H_2O_2)/2 - c(t)H_2O_2 = c_0 (H_2O_2)/2 - c_0 (H_2O_2)/2 \cdot e^{-kt} = \mathbf{c_0} (\mathbf{H_2O_2})/2 (\mathbf{1 - e^{-kt}}) \text{ mit }$$

$$c(t=0) = 0 \text{ für } t=0 \text{ und für } t \rightarrow \infty \text{: } c(t)O_2 = c_0 (H_2O_2)/2 \text{ (s. Abb. 1)}$$

Ziele

- Ermittlung der spezifischen Geschwindigkeitskonstante k
- Ermittlung der Anfangskonzentration c₀ von H₂O₂


aus der

Funktion:
$$c(t)(O_2) = c_0 (H_2O_2)/2 (1 - e^{-kt})$$

Man erkennt sofort: Die Auftragung des Logarithmus der Konzentration gegen die Zeit kann wegen der 1 in der Klammer **keine** Gerade ergeben (s. Fig.2)

In m (Wasser) vs. Zeit

Fig. 2

Gerhard Greiner

Es gibt zur Ermittlung von k mehrere Möglichkeiten.

1.) Man bildet den Logarithmus der Differenzen der Messwerte $c(O_2)$ zum Endwert $c_0 (H_2O_2)/2$, also

In
$$[(c_0 (H_2O_2)/2 - c(O_2)]$$

und trägt diese Werte gegen die Zeit auf. Dann bestimmt man k aus der Steigung für den linearen Teil des Graphen (s. Fig. 3)

2.) Methode der **Anfangsgeschwindigkeiten**:

Aus dem linearen Graphen c(t) in Abhängigkeit von t für t \rightarrow 0

3.) Man **simuliert** den Kurvenverlauf von c(t) vs. t, mit einem Programm, indem **alle** Wertepaare von c(t) und t und Schätzwerte für c_0 und k benutzt werden

Begründung zu 1.)

$$c(t)(O_2) = c_0 (H_2O_2)/2 (1 - e^{-kt}) = c_0 (H_2O_2)/2 - c_0 (H_2O_2)/2 \cdot e^{-kt}$$

Oder: $c_0 (H_2O_2)/2 - c(t)(O_2) = c_0 (H_2O_2)/2 \cdot e^{-kt}$

Oder:

$$ln([(c_0 (H_2O_2)/2 - c(t)(O_2)] = ln c_0 (H_2O_2)/2 - k \cdot t)$$

Also: Man zieht zu jedem Zeitpunkt vom Endwert, hier 368,7 cm³, der Kurve den gemessenen Wert des Sauerstoffvolumens ($V(O_2)$) ab, bildet den Logarithmus, trägt ihn gegen t auf und ermittelt die Steigung des **linearen** Teils der Kurve.

Fig.3a: **Alle** Messpunkte

Nat. Logarithmen der Differenzen 346,3 - Messwerte gegen die Zeit

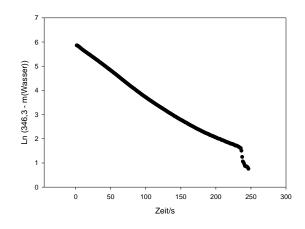
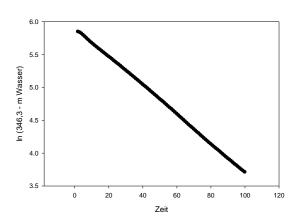



Fig.3b bis **100 s**

Wasserstoffperoxid In (346,3 vs Zeit) linearer Teil

Nach einer linearen Regression erhält man

 $k_1 = 0.022 \text{ 1/s}$ und den Endwert 368,7 g

Begründung zu 2.):

Entwickelt man die e-Funktion in Gl. 1 in eine Taylor-reihe:

$$e^{-x} = 1 - x/1! + x^2/3! - ...$$
 also mit $x = k \cdot t$:

 $e^{-kt} = 1 - kt/1! + (kt)^2/3! - \dots$ und bricht für $t \rightarrow 0$ nach dem 2. Glied ab, wird $e^{-kt} = 1 - kt$

Setzt man dies in Gl. 1 ein, erhält man:

$$c(t)(O_2) = [c_0 (H_2O_2)/2] (1 - 1 + kt) = c_0 (H_2O_2)/2$$
. kt

Oder:

Die Anfangssteigung für kleine t ist:

$$dc/dt = c_0 (H_2O_2)/2 \cdot k$$

Man trägt also zunächst einige Wertepaare c und t in ein Diagramm ein und ermittelt für die lineare Abhängigkeit die Steigung. Sie ist dann:

$$c_0 (H_2O_2)/2 \cdot k$$

Ein Beispiel zeigt die folgende Abbildung:

Man erkennt, dass ein linearer Bereich zwischen 5 und 10s angenommen werden kann

ccm Sauerstoff vs. Zeit in s

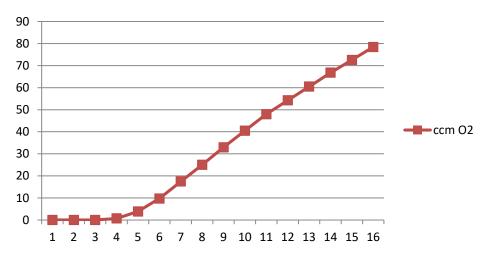


Fig 4a: ccm O₂ vs. Zeit ibis 16s

Wählt man den linearen Bereich zwischen 5 und 10 s ist die Steigung :

ccm Sauerstoff vs. Zeit in s

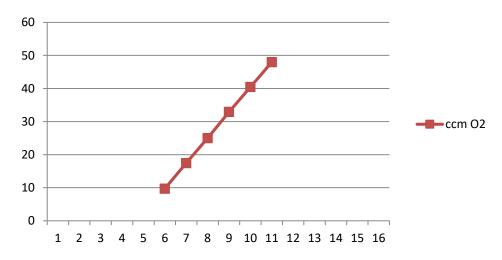
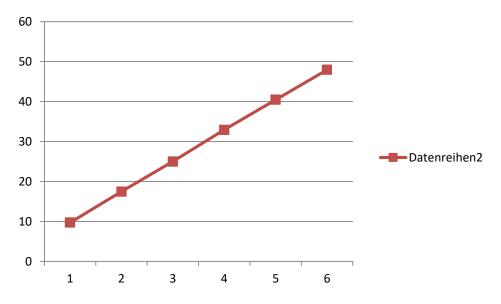



Fig.4b: ccm O₂ vs. Zeit

Fg. 5: Lineare Regression durch 6 Wertepaare

ccm O ₂
9,74
17,47
25
32,93
40,48
47,97

Steigung $7,660285714 \text{ cm}^3 \text{ s}^{-1}$

Achsenabschnitt -28,52047619

Die Steigung c_0k beträgt also 7,66 cm³ s⁻¹ Damit ist $k_1 = 7,66$ cm³ s⁻¹/ $c_0 = 7,66$ cm³ s⁻¹/348,6 cm³ = **0,0219 s**⁻¹

3.) Anpassung von Schätzwerten an die experimentelle Produktkurve

Man installiert in Excel das Zusatzprogramm "Solver" mit

- 1.) Klicke in Excel auf Datei.
- 2.) Klicke auf "Add-Ins.
- 3.) In "View and manage" Microsoft add-ins Fenster
- 4.) klicke auf Go.....auf der rechten Seite des" Manager Excel Options", um die Liste der verfügbaren add-ins anzuzeigen.
- 5.) Klick das Kästchen für das Solver Add-In an .
- 6.) OK

Als Beispiel einer Anpassung werden die zuvor benutzten Messwerte verwendet:

- In der 1. Spalte ist die Zeit in Sekunden eingetragen
- In der 2. Spalte die durch den entstandenen Sauerstoff verdrängte Wassermasse = Wasservolumen in cm³
- In der 3. Spalte ist das berechnete Wasservolumen nach einer Kinetik 1. Ordnung, also $V_{calculated}$, $V(t) = c_{VB} (1 e^{-kt})$ eingetragen.
- In der 4. Spalte sind die Quadrate der Differenzen $(V_{calculated} V_{observed})^2$ eingetragen. Die Schätzwerte für das Endvolumen B_0 und für k sind in den Zellen E3 und E4 eingetragen. Das Solver Programm versucht durch die optimalen Werte von V_B und k die Sum me der Quadrate der Differenzen zu minimieren und trägt an Stelle der Schätzwerte neue Werte ein Ergebnis:

$$B_0 = 348,640 \text{ cm}^3 \text{ und } k = 0,020 \text{ s}^{-1}.$$

Reaktion 1. Ordnung $A \rightarrow B$: $A = H_2O_{2}$, $B = O_2$ $B_{(calculated)} = B_0 (1 - e^{-kt})$

Tabelle nur bis zur 10. Sekunde wiedergegeben

t/s	B(observed)/c cm³	B(calculated	(Differenz) ²
0,0	0,000	0,00E+00	0,0E+00
1,0	0,000	6,80E+00	4,6E+0,1
2,0	0,000	1,35E+01	1,8E+02
3,0	0,7100	2,00E+01	3,7E+02
4,0	3,8300	2,64E+01	5,1E+02
5,0	9,7400	3,27E+01	5,3E+02
6,0	17,4700	3,89E+01	4,6E+02
7,0	25,0000	4,49E+01	4,0E+02
8,0	32,9300	5,08E+01	3,2E+02
9,0	40,4800	5,66E+01	2,6E+02
10,0	47,9700	6,23E+01	2,1E+02

Ergebnisse für k, Vergleich der Methoden

1.) Mit der Methode der **Logarithmen der Differenzen** von m(O₂) zum Endwert:

$$k_1 = 0,0220 \text{ s}^{-1}$$

2.) Mit der Methode der **Anfangsgeschwindigkeit**:

$$k_1 = 0.0219 \text{ s}^{-1}$$

3.) Mit der Anpassung an die Messdaten: $k_1 = (0,020 \pm 0,0001) s^{-1}$

Endwert
$$B_0 = 348,64 \text{ cm}^{-3}$$

Der kleine Fehler bei der Anpassung rechtfertigt die Annahme einer Kinetik 1. Ordnung

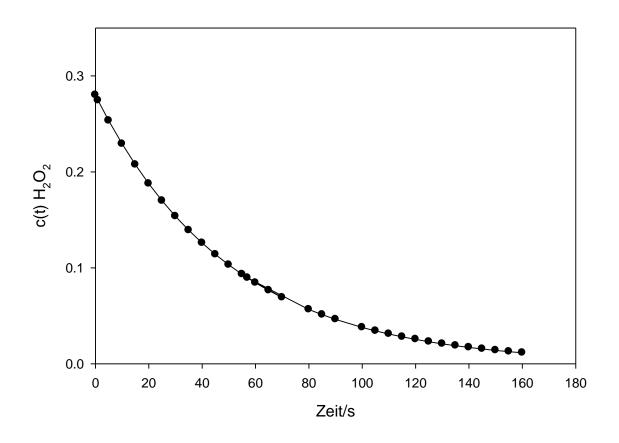
Frage: Wie groß ist die **Anfangskonzetration** c_0 an H_2O_2 in mol/L?

Nimmt man z.B. an, dass dieser $348,64 \text{ cm}^3 \text{ O}_2$ beträgt, dann ist die Stoffmenge an gebildetem Sauerstoff nach dem idealen Gasgesetz::

$$n = \frac{V_{max} \cdot p}{R \cdot T} = \frac{348,64 \cdot 10^{-6} \, m^3 \cdot 101325 JJm^{-3}}{8,314 Jmol^{-1} K^{-1} \cdot 298,15 K} = 0,0143 mol$$

Diese Sauerstoffmenge ist nach der stöchiometrischen Gleichung aus der doppelten H_2O_2 Stoffmenge entstanden. Daher war die H_2O_2 - Stoffmenge bei t = 0:

$$n_0 = 0.028 \text{ mol}$$

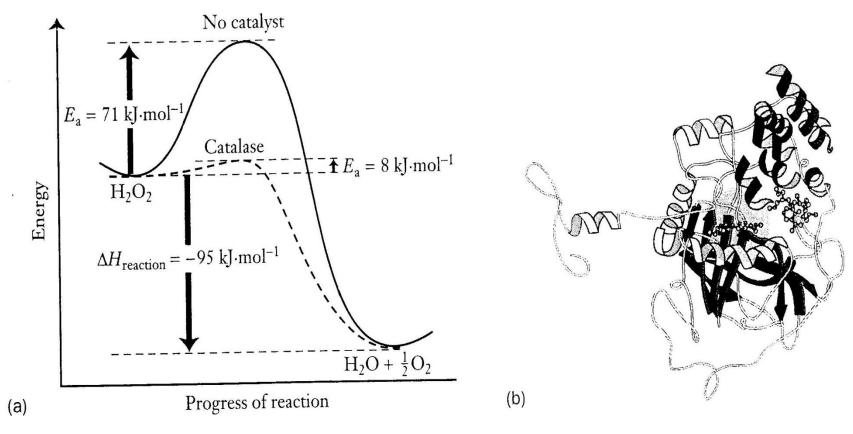

Da das Ausgangsvolumen nicht bekannt ist, lässt sich c₀ nicht berechnen.

Wenn man annimmt, dass das Anfangsvolumen 100 cm³ betrug, dann ergibt sich die Ausgangskonzentration des H₂O₂, c₀:

$$C_0 = 0.028 \text{ mol} / 0.1 \text{ L} = 0.28 \text{ mol } L^{-1}$$

Damit lässt sich die Zerfallskurve des H₂O₂ mit dem bekannten k darstellen:

 H_2O_2 -Zerfall mit c(0)=0,28 mol/L und k_1 =0,02 1/s


Vergleich der kinetischen Daten verschiedener Reaktionen des H₂O₂-Zerfalls

Katalysator	k ₁ /(mol L ⁻¹ s ⁻¹)	Aktiv.energie E _a (→) /(kJ mol ⁻¹)	Lit.Quelle
Ohne Katalysator	10 ⁻⁸	71	Chemistry (a)
J-1	4,7*10 ⁻³ (bei 22 ⁰ C)	59	Horlacher (Andreas Mayer, 2008)
MnO ₂	0,0205 ± 0,0001 ≈ 2 * 10 ⁻²	37	Chemistry (a)
Katalase	10 ⁷	8	Chemistry (a)

a): "Chemistry": A Project of the American Chemical Society. W.H. Freeman and Company N.Y. 2005

Veranschaulichung des Zusammenhangs zwischen Eau, k und Temperatur

Aus: "Chemistry" A Project of the America n Chemical Society, W.H.Freeman NY

Arrhenius-Gleichung: $k = A * e^{-E(a)(/RT)}$

$$E_a (\rightarrow) = 71 \text{ kJ mol}^{-1}$$

E_a: Aktivierungsenergie

$$E_a (\leftarrow) = 166 \text{ kJ mol}^{-1}$$

Wie kann man k interpretieren?

Da $k = -(\Delta c/\Delta t)/c$ ist, gibt k an, wieviel in der Zeiteinheit s oder min an Ausgangsprodukt zerfällt, wenn man mit der Einheitskonzentration c = 1 mol/L startet.

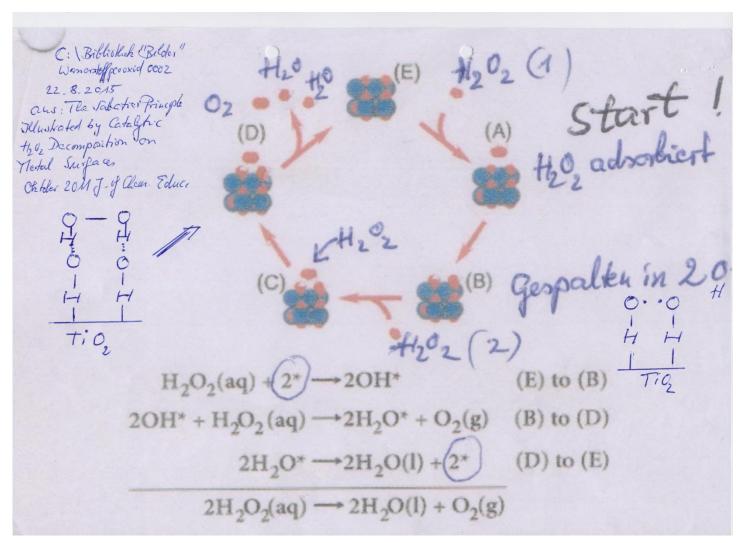
Beispiel: Beim Zerfall von H_2O_2 zerfällt in einer Sekunde von 1 mol/L die Konzentration von 0,022 mol/L, in 1 min 60 mal mehr, also 60 s* 0,022 mol/s = 1,32 mol/min

$$k (H_2O_2) - Zerfall: k = -1,1 L mol^{-1}s^{-1}$$

Vergleich:

Die Zerfallsreaktion von Distickstoffpentoxid

$$2 \text{ N}_2\text{O}_5 \rightarrow 4 \text{ NO}_2 + \text{O}_2$$


Ist bei 45°C auch eine Reaktion 1. Ordnung

$$k (N_2O_5) - Zerfall: k = -6,2 *10^{-4} Lmol^{-1} min^{-1}$$

Warum bleibt der Katalysator unverändert?

Der katalytische Zyklus

Aus: Journal of Chemical Education Dezember 2011, Nr. 12, S. 1713, Fig. 3

Gerhard Greiner

Warum ist der katalytische Zerfall von H₂O₂ eine Reaktion 1. Ordnung

Bei einer Abfolge von eine Reihe von Elementarreaktionen bestimmt die **langsamste** Reaktion die Reaktionsordnung.

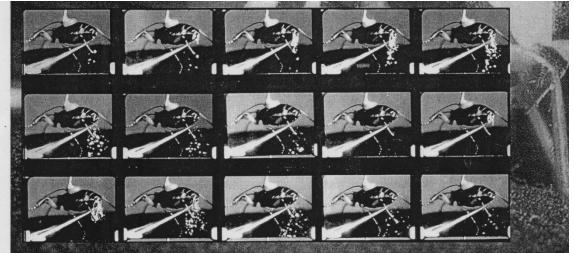
Höchstwahrscheinlich ist der langsamste Schritt im katalytischen Zyklus die Reaktion von A nach B, eine Reaktion 1.Ordnung, die **Spaltung der –O-O- Bindung** und die Bildung zweier OH-Radikale

Anwendung von H₂O₂ bzw. Peroxiden

1.) H₂O₂ als Bleichmittel

In Waschmitteln. Beispiel: Persil

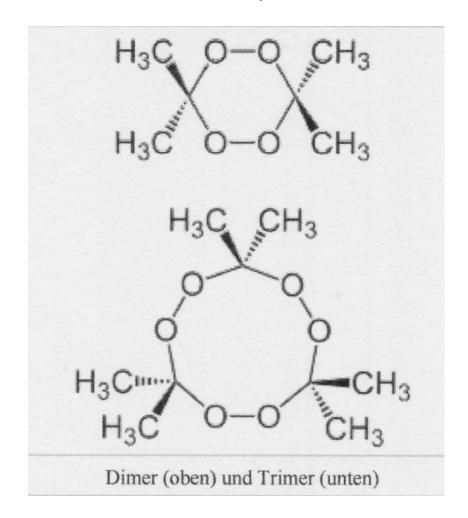
Der Name ist gebildet aus: Peroxid NaBO₃ + Silikat


Die katalytische Zersetzung durch Schwermetalle wird durch Komplexbildner (zB. EDTA) verhindert **2.)** H₂O₂ zur Abwehr im Tierreich:

Beispiel: Bombardier – Käfer.

 $\Delta t = 1/4000 \text{ s}$

Katalysator: Katalase



Superimposed on an image of a bombardier beetle is part of a stroboscopic movie showing the beetle emitting its defensive spray (the tiny white droplets in some frames). The time interval between these pictures is 0.25 ms (1/4000th of a second). The chemistry of the beetle's defense involves hydrogen peroxide reactions and decomposition. The molecular structure is a protein, the enzyme catalase, which catalyzes decomposition of hydrogen peroxide to water and oxygen. The active enzyme has four of these molecules stacked together.

Aus Chemistry

3.) H₂O₂ zur Herstellung von Sprengstoff

Acetonperoxid

